Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
主要な著者: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
フォーマット: | info:eu-repo/semantics/report |
言語: | English |
出版事項: |
2012
|
オンライン・アクセス: | http://hdl.handle.net/10835/1555 |
類似資料
-
Selective naive Bayes predictor with mixtures of truncated exponentials
著者:: Morales, María, 等
出版事項: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
著者:: Fernández, Antonio, 等
出版事項: (2012) -
Estimating mixtures of truncated exponentials from data
著者:: Moral, Serafín, 等
出版事項: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
著者:: Rumí, Rafael, 等
出版事項: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
著者:: Langseth, Helge, 等
出版事項: (2012)