Unsupervised naive Bayes for data clustering with mixtures of truncated exponentials
In this paper we propose a naive Bayes model for unsupervised data clustering, where the class variable is hidden. The feature variables can be discrete or continuous, as the conditional distributions are represented as mixtures of truncated exponentials (MTEs). The number of classes is determined u...
Asıl Yazarlar: | Gámez Martín, José Antonio, Rumí, Rafael, Salmerón Cerdán, Antonio |
---|---|
Materyal Türü: | info:eu-repo/semantics/report |
Dil: | English |
Baskı/Yayın Bilgisi: |
2012
|
Online Erişim: | http://hdl.handle.net/10835/1555 |
Benzer Materyaller
-
Selective naive Bayes predictor with mixtures of truncated exponentials
Yazar:: Morales, María, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Learning naive Bayes regression models with missing data using mixtures of truncated exponentials
Yazar:: Fernández, Antonio, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Estimating mixtures of truncated exponentials from data
Yazar:: Moral, Serafín, ve diğerleri
Baskı/Yayın Bilgisi: (2012) -
Approximate Probability Propagation with Mixtures of Truncated Exponentials*
Yazar:: Rumí, Rafael, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Parameter Estimation in Mixtures of Truncated Exponentials
Yazar:: Langseth, Helge, ve diğerleri
Baskı/Yayın Bilgisi: (2012)