MoTBFs: An R Package for Learning Hybrid Bayesian Networks Using Mixtures of Truncated Basis Functions
This paper introduces MoTBFs, an R package for manipulating mixtures of truncated basis functions. This class of functions allows the representation of joint probability distributions involving discrete and continuous variables simultaneously, and includes mixtures of truncated exponentials and mixt...
Główni autorzy: | Maldonado González, Ana Devaki, Salmerón Cerdán, Antonio, Pérez Bernabé, Inmaculada, Nielsen, Thomas Dyhre |
---|---|
Format: | info:eu-repo/semantics/article |
Język: | English |
Wydane: |
The R Foundation
2023
|
Dostęp online: | http://hdl.handle.net/10835/14822 |
Podobne zapisy
-
Mixtures of Truncated Basis Functions
od: Langseth, Helge, i wsp.
Wydane: (2017) -
Learning Mixtures of Truncated Basis Functions from Data
od: Langseth, Helge, i wsp.
Wydane: (2017) -
Learning Conditional Distributions using Mixtures of Truncated Basis Functions
od: Pérez-Bernabé, Inmaculada, i wsp.
Wydane: (2017) -
Learning hybrid Bayesian networks using mixtures of truncated exponentials
od: Romero, Vanessa, i wsp.
Wydane: (2017) -
Structural Learning of Bayesian Networks with Mixtures of Truncated Exponentials
od: Romero, Vanessa, i wsp.
Wydane: (2012)